
 AST-2022-0023 
 

 

Version 1.0 National Research Council Canada Page i 

 

 

 

 

TECHNICAL REPORT 

Emerging Technologies for Monitoring and Managing 

Water Levels around Railway Tracks, Phase II-Stage II 

 

 

Prepared for: Brooke Jones,  
Transport Canada Innovation Centre   

 

Prepared by: Alireza Roghani, Juan Pablo Arroyo-Mora, 

 Hamid Mammeri, Samy Metari, Taufiq Rahman,  

Abdul Jabbar Siddiqi  

National Research Council Canada 

in collaboration with: Margaret Kalacska,  

Applied Remote Sensing Lab, McGill University 

June 1, 2022 

 

Project: A1-019683 

Report Number: AST-2022-0023 

 

 



 AST-2022-0023 
 

 

Version 1.0 National Research Council Canada Page ii 

 

Change Control  

Version Date Description Author 

0 March 16, 2022 Draft Report 
AR, JPA-M, MK, AM, SM, 

TR 

1.0 June 01, 2022 Initial Release 
AR, JPA-M, MK, AM, SM, 

TR 

    

 

Prepared by (Signed) Authored by 

Alireza Roghani, Ph.D., P. Eng. 

Research Officer, Automotive and Surface 

Transportation 

Dr. Juan Pablo Arroyo-Mora, Research Officer, Aerospace 

Centre 

Dr. Margaret Kalacska, Associate Professor, McGill 

University 

Dr. Abdelhamid Mammeri, Research Officer, Automotive 

and Surface Transportation 

Dr. Samy Metari, Research Officer, Automotive and Surface 

Transportation 

Dr. Taufiq Rahman, Research Officer, Automotive and 

Surface Transportation 

 

 

Reviewed By 

 

Robert Caldwell, P.Eng. 

Senior Engineer, Automotive and Surface 

Transportation 

  

Approved by  

Philip Marsh, P. Eng 

Director, R&D, Transportation Engineering Centre  

 

 

  

© 2022 Her Majesty the Queen in Right of Canada, as represented by the National Research Council 
Canada. 

  

https://www.linkedin.com/jobs/national-research-council
https://twitter.com/nrc_cnrc
https://www.instagram.com/nrc_cnrc/


 

 

UNCLASSIFIED / NON CLASSIFIÉ 

This report reflects the views of the authors only and does not reflect the views or policies of Transport 

Canada. Neither Transport Canada, nor its employees, makes any warranty, express or implied, or 

assumes any legal liability or responsibility for the accuracy or completeness of any information 

contained in this report, or process described herein, and assumes no responsibility for anyone’s use of 

the information. Transport Canada is not responsible for errors or omissions in this report and makes no 

representations as to the accuracy or completeness of the information. Transport Canada does not 

endorse products or companies. Reference in this report to any specific commercial products, process, 

or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its 

endorsement, recommendation, or favoring by Transport Canada and shall not be used for advertising 

or service endorsement purposes. Trade or company names appear in this report only because they are 

essential to the objectives of the report. References and hyperlinks to external web sites do not 

constitute endorsement by Transport Canada of the linked web sites, or the information, products or 

services contained therein. Transport Canada does not exercise any editorial control over the 

information you may find at these locations. 

 



 AST-2022-0023 
 

Version 1.0 National Research Council Canada Page iii 

 

 

Acknowledgement 

The authors would like to thank the following people for their help throughout this project: 

 Paul Charbachi, VIA Rail Canada 

 Sylvie Chénier, National Research Council Canada 

 Deborah deGrasse, Transport Canada Innovation Centre 

 Matthew Erkhart, National Research Council Canada 

 Xiao Hu, student, National Research Council Canada 

 Brooke Jones, Transport Canada Innovation Centre 

 Olivier Lucanus, McGill University 

 Derek Morrell, National Research Council Canada 

 Michel Moore, student, National Research Council Canada 

 Jason Pierosara, National Research Council Canada 

 Gordon Poole, National Research Council Canada 

 Stephen Sweeney, National Research Council Canada 

 Albert Wahba, National Research Council Canada 

 Yannick Warin, VIA Rail Canada 

  



 AST-2022-0023 
 

Version 1.0 National Research Council Canada Page iv 

 

Table of contents 

1 Introduction ................................................................................................................................................ 4 

2 Objectives and scope of Phase-II .............................................................................................................. 6 

3 Using UAV and satellite imagery for mapping water ................................................................................. 8 

3.1 Data collection ..................................................................................................................................... 8 

3.1.1 Test sites ....................................................................................................................................... 8 

3.1.2 Airframes and sensors ................................................................................................................ 11 

3.1.3 UAV image processing ............................................................................................................... 13 

3.1.4 Satellite imagery ......................................................................................................................... 14 

3.2 Water classification from UAV orthomosaics and satellite imagery .................................................. 15 

3.2.1 Analysis ....................................................................................................................................... 17 

3.2.2 Results ........................................................................................................................................ 18 

3.3 Web visualization ............................................................................................................................... 25 

3.4 Discussion ......................................................................................................................................... 26 

3.5 Lessons learned and future work ...................................................................................................... 27 

4 Developing AI algorithms to detect water bodies near railway track from UAV-based RGB images ...... 28 

4.1 Data preparation ................................................................................................................................ 28 

4.1.1 Test sites ..................................................................................................................................... 28 

4.1.2 Ground truth annotations ............................................................................................................ 28 

4.1.3 Samples generation: orthomosaic tiling ...................................................................................... 30 

4.1.4 Dataset organization ................................................................................................................... 31 

4.2 Methodology ...................................................................................................................................... 32 

4.2.1 Water detection and segmentation ............................................................................................. 32 

4.2.2 Water change detection .............................................................................................................. 33 

4.3 Image analysis ................................................................................................................................... 36 

4.3.1 Water detection and segmentation ............................................................................................. 37 

4.3.2 Discussion and results analysis .................................................................................................. 46 

4.3.3 Water change detection .............................................................................................................. 47 

4.3.4 Discussion and results analysis .................................................................................................. 53 

4.4 Lessons learned and future Work ..................................................................................................... 54 

5 Using instrumented hi-rail truck for water mapping ................................................................................. 56 

5.1 DAQ system hardware ...................................................................................................................... 56 



 AST-2022-0023 
 

Version 1.0 National Research Council Canada Page v 

 

5.1.1 DAQ system software ................................................................................................................. 57 

5.1.2 Choice of sensing modalities and wavelengths .......................................................................... 59 

5.2 Data acquisition ................................................................................................................................. 60 

5.3 LiDAR data processing ...................................................................................................................... 62 

5.4 Camera data processing ................................................................................................................... 63 

5.4.1 Training data annotation ............................................................................................................. 64 

5.4.2 Training data preprocessing ....................................................................................................... 65 

5.4.3 Model training ............................................................................................................................. 66 

5.5 Detection and tracking of water ......................................................................................................... 67 

5.5.1 Data mining protocol ................................................................................................................... 67 

5.5.2 Model prediction examples ......................................................................................................... 69 

5.6 Lessons learned and future work ...................................................................................................... 72 

5.6.1 General remarks ......................................................................................................................... 72 

5.6.2 Imaging in LWIR spectrum and ML-based techniques for water detection ................................ 73 

5.6.3 LiDAR Mapping ........................................................................................................................... 74 

6 Conclusion and future work...................................................................................................................... 75 

6.1 Conclusion ......................................................................................................................................... 75 

6.2 Future work ........................................................................................................................................ 76 

7 References ............................................................................................................................................... 78 

Appendix A RailWater-UNet Model for Segmentation of Rail-track and Water Regions ............................ 82 

Appendix B RailWater-ConvTrans .............................................................................................................. 84 

Appendix C Performance Metrics and Hyperparameter Settings ............................................................... 87 

Appendix D Performance of RailWater-UNet and RailWater-ConvTrans during training and evaluation (D1-

3, D2-3) ....................................................................................................................................................... 89 

Appendix E Water Change Detection ......................................................................................................... 95 

 



 AST-2022-0023 
 

Version 1.0 National Research Council Canada Page vi 

 

List of figures 

Figure 1. The relative location of test sites along VIA Rail’s track in eastern Ontario for assessing change 

in surface water levels. .................................................................................................................................. 8 

Figure 2. Example of mission planning in DJI Pilot for one of the test sites. .............................................. 10 

Figure 3. Nadir vs DJI’s smart oblique capture implemented by the P1 camera. ....................................... 10 

Figure 4. Different components for UAV data acquisition over railway sections for detection of surface water 

(RS2 not shown here). ................................................................................................................................ 12 

Figure 5. Implementation of SfM-MVS to derived railway products: 3D point cloud, DSM, and orthomosaic.

  ............................................................................................................................................................ 14 

Figure 6. PlanetScope satellite imagery for sites 1A, 1B and 2 showing the landscape context for water 

surface classification. .................................................................................................................................. 15 

Figure 7. Examples of vegetation on surface water. ................................................................................... 16 

Figure 8. Example of GEOBIA segmentation (A) and classification (B) in eCognition for the June 1st data 

from Site 2. .................................................................................................................................................. 17 

Figure 9. Orthomosaic product at 3cm GSD for Site 1A from June 2nd, 2021. Inset shows a closer look at 

the water surface, revealing the clear details of the submerged vegetation. .............................................. 19 

Figure 10. Example of the 3D point cloud output from the SfM-MVS photogrammetry workflow showing A) 

RGB true colour and B) elevation expressed as height above ellipsoid generated for Site 3A from August. 

  ............................................................................................................................................................ 20 

Figure 11. Exposed surface water in percent across sites and periods based on a GEOBIA classification of 

the orthomosaics (3 cm pixel size). ............................................................................................................. 22 

Figure 12. Median height values and vertical differences between culvert or bridge structure (above dotted 

line) and water level (below dotted line) across sites and periods, based on 3D point cloud profiles. ....... 23 

Figure 13. Changes in exposed surface water area and the delineation of the wetlands from PlanetScope 

satellite imagery. ......................................................................................................................................... 25 

Figure 14. Examples of the web interface for visualization and basic operations for orthomosaics (A) and 

3D point clouds (B) derived from UAV SfM-MVS photogrammetry. ........................................................... 26 

Figure 15. Ground truth annotations: polygons drawn on regions of rail, water and “vegwater” (a section of 

Site 1A Run2 orthomosaic is shown as an example) ................................................................................. 30 

Figure 16. An illustrative example showing an annotation mask (right) for a 5x5 image patch (left) from an 

orthomosaic: the mask has values ‘1’ for pixels marked as water and values of ‘0’ for pixels marked as 

background. ................................................................................................................................................ 30 

Figure 17. The architecture of RailWater-ConvTrans proposed and developed in this work inspired from 

[16].  ............................................................................................................................................................ 33 

Figure 18. Workflow of the 2D water change detection algorithm. ............................................................. 34 

Figure 19. Example of surface water area mapping ................................................................................... 35 

Figure 20. Workflow of the 3D water change detection algorithm .............................................................. 36 



 AST-2022-0023 
 

Version 1.0 National Research Council Canada Page vii 

 

Figure 21. 2D and 3D representation of water level change detected by the algorithm on Site 1A from Run1 

to Run2. ....................................................................................................................................................... 36 

Figure 22. Training (left) and validation (right) loss function of RailWater-ConvTrans model on D1-1 ...... 39 

Figure 23. Performance graphs of RailWater-ConvTrans on D1-1 validation data. ................................... 39 

Figure 24. Training (left) and validation (right) loss of RailWater-UNet model on D1-1 ............................. 39 

Figure 25. Performance graphs of RailWater-UNet on D1-1 validation data: ............................................. 40 

Figure 26. Sample outputs of RailWater-ConvTrans (left two columns), RailWater-UNet (right two columns) 

on D1-1 test set. Red color refers to Rail, and blue color refers to water bodies. ...................................... 41 

Figure 27 ....................................................................................................... Error! Bookmark not defined. 

Figure 27. Training (left) and validation (right) loss of ConvTrans model on D2-1 ..................................... 42 

Figure 28. Performance graphs of RailWater-ConvTrans on D2-1 validation data. ................................... 43 

Figure 29. Training (left) and validation (right) loss of RailWater-UNet model on D2-1. ............................ 43 

Figure 30. Performance graphs of RailWater-UNet, on D2-1 validation data ............................................. 43 

Figure 31. Sample outputs of RailWater-ConvTrans (left two columns) and RailWater-UNet (right two 

columns) on D2-1 test set . Yellow refers to Water, Green to “vegwater”, and Blue for Rail ..................... 45 

Figure 32. The result of water change detection for D1-8-5 under RailWater-ConvTrans model for Site1A. 

  ............................................................................................................................................................ 48 

Figure 33. The result of water change detection for D1-8-5 under RailWater-UNet model for Site1A. ...... 49 

Figure 34. The result of water change detection for D2-8-5 under RailWater-ConvTrans model for Site1A. 

  ............................................................................................................................................................ 50 

Figure 35. The result of water change detection for D2-8-5 under RailWater-UNet model for Site1A. ...... 51 

Figure 36. The water level change visualization of D1-8-5 with RailWater-ConvTrans for Site 1A............ 52 

Figure 37. The water level change visualization of D1-8-5 with RailWater-UNet for Site 1A. .................... 52 

Figure 38. An example of the predicted result from UNet (top), and ConvTrans (bottom) on Site 1A. ...... 54 

Figure 39. Instrumented hi-rail truck. .......................................................................................................... 56 

Figure 40. Auxiliary components for the DAQ (left) and in-vehicle visualization (right). ............................. 57 

Figure 41. DAQ system software block-diagram. ....................................................................................... 58 

Figure 42. ROS data acquisition pipeline. ................................................................................................... 59 

Figure 43. Absorption spectrum of liquid water (wavelength of the RGB & IR cameras highlighted) © OMLC

  ............................................................................................................................................................ 60 

Figure 44. Data acquisition routes with GPS coordinates retrieved from stored data. ............................... 61 

Figure 45. ROSBAG data being visualized. ................................................................................................ 62 

Figure 46. 3D point cloud map showing a railway track, bridge, and the surrounding area. ...................... 63 

Figure 47. Challenges of detecting a water body around railway tracks. ................................................... 64 



 AST-2022-0023 
 

Version 1.0 National Research Council Canada Page viii 

 

Figure 48. Training data examples (red: class w1 representing clear water, blue: class w2 representing 

water with vegetation and reflections). ........................................................................................................ 65 

Figure 49. Model training performance. ...................................................................................................... 67 

Figure 50. IR frames from the same location in site 2 captured in two data runs (left: data Run1, right: data 

Run2). .......................................................................................................................................................... 68 

Figure 51. Detected water presence in three test sites (green: data Run1, red: data Run2). .................... 69 

Figure 52. Examples of model predictions (red: class w1, blue: class: w2). .............................................. 72 

Figure A-1: Architectural overview of the proposed RailWater-UNet ......................................................... 83 

Figure B-2. (Left) Training loss values of RailWater-ConvTrans (Convolution-Transformer) with the two 

different loss functions. (Right) Validation performance of RailWater-ConvTrans ..................................... 86 

Figure E-1: Training (left) and validation (right) loss of ConvTrans model on D1-3 ................................... 89 

Figure E-2: Performance graphs of RailWater-ConvTrans on D1-3 validation data................................... 89 

Figure E-3: Training (left) and validation (right) loss of RailWater-UNet model on D1-3 ............................ 90 

Figure E-4: Performance graphs of RailWater-UNet on D1-3 validation data ............................................ 90 

Figure E-5 Sample outputs of RailWater-ConvTrans (left two columns) and RailWater-UNet (Right two 

columns) on D1-3 test set ........................................................................................................................... 91 

Figure E-6. Training (left) and validation (right) loss of ConvTrans model on D2-3 ................................... 92 

Figure E-7: Performance graphs of RailWater-ConvTrans on D2-3 validation data................................... 92 

Figure E-8: Training (left) and validation (right) loss of RailWater-UNet model on D2-3 ............................ 93 

Figure E-9: Performance graphs of RailWater-UNet on D2-3 validation data ............................................ 93 

Figure E-10: Sample outputs of RailWater-ConvTrans (left two columns) and RailWater-UNet (Right two 

columns)  on D2-3 test set .......................................................................................................................... 94 

Figure F-1: The result of water change detection for D1-8-6 under RailWater-ConvTrans model for Site 1B.

  ............................................................................................................................................................ 96 

Figure F-2: the result of water change detection for D1-8-6 under RailWater-UNet model for Site 1B...... 97 

Figure F-3: The result of water change detection for D1-8-7 under RailWater-ConvTrans model for Site 2. 

  ............................................................................................................................................................ 98 

Figure F-4: The result of water change detection for D1-8-7 under RailWater-UNet model for Site 2. ...... 99 

Figure F-5: The result of water change detection for D2-8-6 under RailWater-ConvTrans model for Site 1B.

  .......................................................................................................................................................... 100 

Figure F-6: The result of water change detection for D2-8-6 under RailWater-UNet model for Site 1B. . 101 

Figure F-7: The result of water change detection for D2-8-7 under RailWater-ConvTrans mode for Site 2. . 

  .......................................................................................................................................................... 102 

Figure F-8: The result of water change detection for D2-8-7 under RailWater-UNet model for Site 2. .... 103 

Figure F-9: The water level change visualization of D1-8-6 with RailWater-Convtrans for Site1B. ......... 104 

Figure F-10: The water level change visualization of D1-8-6 with RailWater-UNet for Site1B. ................ 104 



 AST-2022-0023 
 

Version 1.0 National Research Council Canada Page ix 

 

Figure F-11: The water level change visualization of D1-8-7 with RailWater-Convtrans for Site2. .......... 105 

Figure F-12: The water level change visualization of D1-8-7 with RailWater-UNet for Site2. .................. 105 



 AST-2022-0023 
 

Version 1.0 National Research Council Canada Page x 

 

List of tables 

Table 1. Comparing the advantages and limitations of various water monitoring methods (from Phase-I). 5 

Table 2. Total area planned for UAV data acquisition for each subdivision. ................................................ 9 

Table 3. UAV data acquisition dates. ............................................................................................................ 9 

Table 4. Acquisition mode, system and base station used for data collection at railway sites. .................. 12 

Table 5. Confusion matrix for the September Site 1B classification. .......................................................... 17 

Table 6. UAV data acquisition and SfM- MVS results for railway sites across time periods. ..................... 18 

Table 7. Average values of the uncertainty of the geotags for longitude, latitude and height. ................... 21 

Table 8. Orthomosaics used to enhance the AI algorithm .......................................................................... 28 

Table 9. Number of samples generated from each orthomosaic (each sample has a size of 416x416 pixels)

  ............................................................................................................................................................ 31 

Table 10. Dataset version related to D1 (merging “vegwater” and water regions as one class) ................ 37 

Table 11. Dataset version related to D2 (keeping “vegwater” and water regions as separate classes) .... 38 

Table 12. Summary of the IoU/mIoU scores during testing of the models for the D1-1 experiment .......... 40 

Table 13. Summary of the IoU/mIoU scores during testing of the models for the D2-1 experiment. ......... 44 

Table 14. Summary of the IoU/mIoU scores of both models for the D1-3 experiment. .............................. 45 

Table 15. Summary of the IoU/mIoU scores of both models for the D2-3 experiment. .............................. 45 

Table 16. Summary of the IoU/mIoU scores of both models for the D1-8 experiment ............................... 46 

Table 17. Summary of the IoU/mIoU scores of both models for the D2-8 experiment ............................... 46 

Table 18. Sensor suite deployed on the instrumented hi-rail truck. ............................................................ 57 

Table 19. Trained model performance. ....................................................................................................... 66 

Table 20. % change in water presence over time. ...................................................................................... 68 

Table D-1: The Hyperparameter used in the project .................................................................................. 88 

 

 

 

 



 AST-2022-0023 
 

Version 1.0 National Research Council Canada Page 1 

 

Executive Summary 

The level of water near a railway track can be a major factor affecting the safety of train passage. The 

closure of several main rail lines in British Columbia in autumn of 2021 is the most recent example of the 

effect of flooding and washout on train operations and the dependency of the supply chain on reliable and 

efficient railway transportation. Such extreme weather events are expected to become more frequent and 

severe under the future climate, affecting the resiliency of transportation infrastructure including railways. 

To improve the resiliency of railway operation, it is imperative to explore and employ the potential of 

emerging technologies for improved water detection and inspection near railway tracks. 

In 2019, the National Research Council Canada (NRC) and Transport Canada (TC) undertook a 

collaborative research project to evaluate the potential of satellite and UAV imagery to inspect water near 

railway tracks (Phase-I). The results of this project demonstrated that even though these technologies 

cannot entirely replace the current methods of water inspection, they provide information to track inspectors 

that is supplementary to what is currently available. In 2021, NRC and TC agreed to further explore the 

potential and limitations of these technologies through limited field trials (Phase-II). These trials included 

data from three different platforms: satellite (space); unmanned aerial vehicles (UAV) (airborne); and hi-rail 

truck (track level). The measurements from various sensors and platforms in Phase-II provided a wide 

range of complementary information with different spatial and temporal resolutions and different fields of 

view. This report presents the results of Phase-II of this project. 

NRC in collaboration with the Applied Remote Sensing Lab (ARSL) at McGill University conducted UAV 

surveys at four sites along VIA Rail’s line between Ottawa and Brockville that are prone to high water level 

and flooding. The test sites varied in length (from approximately 180 m to 500 m) and were surveyed four 

times between June and October 2021. The main airframe used during these surveys was DJI’s Matrice 

300 RTK (Real-time Kinematic Positioning) with a Zenmuse P1 camera capable of capturing 45 megapixels 

photographs in smart oblique mode. The flights were mainly carried out at 80 m height and covered an area 

within a 50 m buffer on both sides of the tracks. In total, 43 acres of ground were inspected by the UAV and 

almost 12,000 images were taken. These images were used to create 2D and 3D products (3D point clouds, 

a digital surface model (DSM), and an orthomosaic) for each test site and each survey date to map the 

spatial and temporal variations in surface water area as well as the water level. Commercially available 

software packages were used to generate water/non-water classifications from the orthomosaics using an 

image segmentation approach. A detailed analysis of the orthomosaic images (spatial resolution of 3 cm) 

revealed that in the field, water can be found either with an exposed surface or with a considerable amount 

of its surface covered in floating aquatic vegetation. These water bodies covered with leaves must be 

detected as water, otherwise the extent of water in that area would be underestimated. The DSM was also 

incorporated into the classification to mitigate the effect of leaves and vegetation on underestimating the 

surface water. The results of the classification were then used to quantify the temporal changes in the 

surface water area for each test site. The results suggested that the trend in the extent of surface water 

over time varies among the test sites and largely depends on seasonal vegetation dynamics in the wetlands. 

For example, at one of the sites the largest surface water area was found to be in early June when the 

immature wetland vegetation exposes a larger portion of the surface water while on another site where the 

water source was a creek rather than a wetland with dense stands of emergent vegetation, the surface 

water area consistently increased from August to October. In addition to quantifying the temporal changes 
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in the water level within the test sites, Cloud Compare v2.12 and PotreeDesktop v1.8 were used to visualize 

and extract elevation profiles from the 3D point clouds. The distance between the water surface and a fixed 

structure such as a bridge or culvert at each test site was used to accurately measure the changes in water 

level. In this approach, the locations within the dataset from which measurements are taken need to be 

carefully selected otherwise they may introduce error in the interpretation. Overall the consistent multi-

temporal UAV datasets and their associated products were found to be suitable to quantify the spatial and 

temporal variations in the surface water area as well as the water level. Some changes including addition 

of a LiDAR unit and modification of the flight pattern are still required to advance the UAV work procedure 

developed in this project to a stage that could be used/employed by the railways. 

Imagery from the PlanetScope Dove satellite constellation was used for mapping the surface water and 

wetland over a larger area than the one surveyed by the UAV near the test sites. The pixel size of the 

imagery is 3 m, and the spectral resolution is four bands (blue, green, red and near-infrared wavelength 

ranges). The images were acquired from this platform on the same dates as the UAV surveys. An approach 

similar to that for the UAV imagery was used to segment and classify surface water from these images. 

The comparison of the processed images between the four dates suggested that the rapid growth of the 

wetland vegetation hinders the extraction of the water. This is mainly attributed to the spatial resolution of 

the images as very few areas of exposed surface water are large enough to be the main contributor to the 

pixels. Despite this limitation, the imagery from PlanetScope was suitable for extracting the overall area 

(i.e. wetland) which is prone to flooding. Further investigation would be required to provide 

recommendations to railways regarding the use of satellite imagery for water mapping. It is imperative to 

test imagery from other satellite platforms with higher spatial resolution and compare the level of details 

extracted from each so that a true benefit-cost analysis can be performed. 

The collection of a large dataset of UAV images from the four test sites at four different times of the year 

provided a unique opportunity to further investigate the best approaches to automate water detection by 

using AI algorithms. The diverse datasets were used to enhance the algorithm developed in Phase-I 

(Railwater-UNet) and also to develop a new algorithm (Railwater-ConvTrans) that takes advantage of 

recently developed machine learning techniques. These algorithms were trained to identify and differentiate 

between different pixels (or groups of pixels) belonging to the different classes (water, railway track or 

background). This dataset also enabled us to use and compare different scenarios for training and testing 

algorithms. In one experiment, the algorithms were trained based on images collected at a certain site and 

date and then tested on images from another site to evaluate how they would perform over unseen data. 

The presence of vegetation (as described earlier) complicates the water detection task. To mitigate this 

issue, the water class was separated into two classes: water, referring to water bodies with a clear surface, 

and “vegwater”, referring to water bodies that have leaves and vegetation on the surface. This separation 

improved the overall performance of the algorithms. The algorithm that showed the best performance (the 

output map of water had the highest agreement with ground truth data) was then used to identify the water 

regions in geo-referenced orthomosaics from a given site over the survey dates. The mapped water areas 

were then subtracted from each other to identify the areas where there was an increase or decrease in 

surface water. The mapped water areas were also combined with the DSM (containing elevation 

information) to identify the water elevation change. Overall it was found that having a diverse set of UAV 

images and separating water into two classes (with and without surface vegetation) improves the 

performance of the AI algorithms. However, the algorithms performance is not at a level where they could 
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be reliably used by the railways. Additional diverse datasets would still be required to advance the 

automated water detection task. 

NRC instrumented a hi-rail truck with a suite of sensors (LiDAR, RGB camera, and infrared camera) and 

auxiliary components to develop a complete data acquisition (DAQ) system that can acquire environmental 

data in different electromagnetic spectra. The instrumented hi-rail truck was employed for data collection 

between VIA Rail’s Fallowfield station in Ottawa and the end of the Brockville subdivision (approximately 

90 km) for two runs. The LiDAR and the inertial measurement unit (IMU) data were merged to construct a 

3D map of the test sections (the same sections surveyed by the UAV) using simultaneous localization and 

mapping (SLAM) techniques. Although these maps can be used for a number of railway inspections tasks, 

water is not strongly represented in the 3D point clouds. The two types of cameras operating in two different 

spectra (infrared and visible) used for data acquisition during hi-rail surveys were also considered for water 

mapping. Since the UAV images were also in the visible spectrum, greater emphasis was put on the infrared 

image processing to extend the scope of data analysis for the overall project. A subset of infrared images 

containing water bodies was extracted from the entire length of tested track during the two hi-rail runs. 

These images were annotated to train an algorithm that identified water bodies next to the track. In the first 

attempt, the training data was annotated with only one class representing all water bodies (water bodies 

with either clear surface or with reflections were treated as one class). This approach did not result in good 

model accuracy (< 0.8 vs 0.96 for the final model) because the training data was too diverse for the model 

to learn the underlying features of two kinds of water surfaces that had completely unique representation 

in the infrared spectrum. Therefore, an approach similar to the one used in processing the UAV-based 

images was adopted and the water bodies were annotated using two classes, water with a clear surface 

and water with vegetation and reflection on the surface. This approach resulted in better accuracy. Using 

the trained algorithm, the infrared images from the test sites used for UAV surveys were processed to 

determine the change of water presence between the two hi-rail runs. It needs to be noted that these values 

should not be compared with those resulting from UAV orthomosaic images because the field of view of 

the two platforms are entirely different. Overall the instrumented hi-rail truck was found to be an effective 

and flexible method to map water bodies that are located next to the track and within the line of sight. The 

collected data also suggested that this platform could potentially be used to inspect other features such as 

movement at the toe or shoulder of the embankment. However, it was also found that some modifications 

in the sensor positions and sensor qualities would be required to realize these potentials. 

The results of Phase-II of this project provided valuable information regarding the operational challenges 

of the three studied platforms (satellite, UAV, and hi-rail truck), the advantages and limitations of the 

measurements from each platform, the minimum specifications required to create certain types of products, 

the challenges in developing highly effective AI algorithms, and the potential of the products for monitoring 

other track features. However, the framework of technology specific methodologies for data collection, 

processing, and analysis proposed in this phase needs to be further developed so that the technologies 

can be used/applied at a large scale by the railways. 
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1 Introduction 

The level of water near a railway track is a major factor affecting the safety of train passage. Prolonged 

periods of heavy rainfall, rapid snowmelt, flash flooding, river flooding, beaver dams, blocked culverts or 

poor drainage design can result in a rise in water levels. The problems associated with high water levels 

include washout (a sudden release of a large quantity of water which quickly damages the trackbed), 

massive shear failure caused by submersion of track substructure, pier scour, and bridge foundation 

erosion that may occur with or without train loading. The closure of some of the Canadian Pacific and 

Canadian National lines in British Columbia in fall 2021 due to flooding is an example of how the extreme 

water events can affect not only the train operations but also the entire supply chain. Climate change is 

expected to exacerbate flooding issues [1] and extreme precipitation is projected to increase in Canada 

under both low and high emission scenarios. An extreme precipitation event that now occurs every 50, 20, 

and 10 years is expected to occur every 10, 5, and 3 years under high-emission scenarios [2], a significant 

change that will affect infrastructure in the future. 

Railways strive to identify the development of problematic water levels in the area surrounding the track. 

This includes observations from hi-rail trucks by trained inspectors to identify indications of water problems 

during their routine inspections and air reconnaissance patrols that take place once or twice each year. In 

addition, when rainfall occurs over multiple days and a sustained accumulation is identified, the railways 

increase the number of patrols ahead of train traffic. Also, when a certain area is expected to have a large 

amount of continuous rain or when a severe weather advisory is issued, the railway companies implement 

additional track patrols to monitor drainage along the railway right-of-way. These inspections rely on the 

inspectors’ judgment regarding the water level, have a very limited range of coverage, and do not provide 

visibility on the water issue in the areas that are out of visual range but still close enough to affect the track. 

The air reconnaissance patrols cover a larger area but they are not as frequent. 

In 2019, National Research Council Canada (NRC) and Transport Canada (TC) undertook a collaborative 

research project to evaluate the potential of emerging technologies such satellite imagery and UAV-based 

imagery to detect water bodies near railway tracks (called Phase-I hereafter). The four Canadian railway 

companies interviewed by NRC during Phase-I of this project stated that even though the current water 

inspection procedures are sufficient for safe railway operation, there is certainly room for improvement, 

especially using the new technologies. The interviewees also indicated that, in their opinion, water issues 

have become more frequent in recent years. Therefore, to assist in the identification of future impacts from 

expected climate changes, it is imperative to develop new methods for water inspection near railway tracks, 

particularly through the use of new and emerging technologies. In Phase-I, some available satellite and 

UAV images were processed to extract surface water information. Based on these limited analysis, NRC 

compared the advantages and limitations of using UAV and satellite data for water inspection with hi-

rail/visual inspection using five different indicators: spatial and temporal resolution, visibility range, water 

detectability, and cost of data acquisition. As described in Table 1, each method has its own advantages 

and limitations and given the information obtained regarding water-related derailments during the interviews 

and the review of TSB’s investigation reports (presented in the Phase-I report1 in detail), the current state 

of UAV and satellite technology is not sufficient for use as the sole method of water monitoring near railway 

                                                      
1 National Research Council Canada (2020).” Emerging Technologies for Monitoring and Managing Water Levels around Railway 

Tracks”. Technical report prepared for Transport Canada Innovation Center, Ottawa, ON. 
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tracks. However, the limited observations from Phase-I of suggested that these technologies offer an 

inexpensive and effective method that provides information about the water issues and supplements the 

information from current inspection methods. 

Table 1. Comparing the advantages and limitations of various water monitoring methods (from Phase-I). 

 

Spatial  
resolution 

Temporal 
Resolution 

Visibility  
range 

Water 
detectability 

Cost* 
Major  
limitation 

Satellite  

Depending on 
satellite 
platform it 
varies 

Depending 
on satellite 
platform it 
varies 

No limit 

Easy water 
detection due 
to water 
response to 
radar signals 

$ 

Inadequate 
spatial and 
temporal 
resolution 
for water 
issues with 
ROW 

UAV 

Depending on 
resolution of 
camera and 
flight height 

Flexible 

Depending on 
flight height, 
approximately 
~10-50 m 
around the  
track 

Challenging 
as colour of 
water differs 

$$ 

A greater 
dataset of 
images 
required for 
automating 
water 
detection 
process 

Hi-rail 
Inspecti
on 

Human eye, 
railways 
indicated that 
inspectors may 
become less 
sensitive to 
change of 
water level 

2-3 times a 
week, could 
become 
more 
frequent  

Right-of-way Human eye $$$ 

Not 
automated, 
limited in 
range 

* Cost of data acquisition  

In 2020, NRC and Transport Canada agreed to start Phase-II of this project whose main goal is to further 

evaluate these technologies by conducting field trials. In Phase-II data from three different platforms 

(satellites, UAV, and hi-rail truck) were collected and processed to evaluate their potential in water detection 

through limited field trials. The field trials included different types of sensors such as LiDAR and high-

resolution visible and infrared cameras. The combination of various sensors and platforms provides a wide 

range of complementary information with different spatial and temporal resolutions as well as different fields 

of view.



 AST-2022-0023 
 

Version 1.0 National Research Council Canada Page 6 

 

2 Objectives and scope of Phase-II 

The goal of Phase-II is to collect data from three different platforms (satellite, UAV, and instrumented hi-rail 

truck) and different sensors (high-resolution camera and LiDAR) over several test sections and process the 

measurements to identify the surface water near railway tracks. This framework provides a basis to further 

compare the advantages and limitations of each platform in terms of their range of vision, resolution and 

accuracy. The combination of three platforms will enable us to inspect surface water at different distances 

from railway track, with satellite data providing the widest coverage and lowest resolution and instrumented 

hi-rail truck data providing the narrowest coverage with highest resolution. 

The following tasks were accomplished during Phase-II of this project: 

Stage-I (January 2021-March 2021): 

• Four test sections along VIA Rail’s line in Ontario were selected to be the main study sites for this 

project after consultation with VIA Rail and several site visits. 

• The UAV test experiments including flight map and sensors to be deployed were designed. 

• The hi-rail truck was inspected to obtain the safety certificates required for deploying it on a 

railway track. 

• An instrumentation plan was designed to install sensors, processing units, and power supply on 

the hi-rail truck. 

Note: the work conducted during Stage-I was summarized in a report submitted in March 20212. 

Stage-II (April 2021-March 2022): 

• Four UAV surveys were conducted between June and October 2021 (with at least one month 

time difference between any two consecutive runs) along the four test sections3 (described in 

detail in Section 3). 

• Analyzed the collected UAV images and created different 2D and 3D products that were used to 

map the spatial and temporal changes in surface water area and water level (described in detail 

in Section 3). 

• Acquired satellite images from the PlanetScope platform at times that corresponded to the UAV 

surveys, and mapped the extent of surface water (described in detail in Section 3). 

                                                      
2 National Research Council Canada (2021). “Emerging Technologies for Monitoring and Managing Water Levels around Railway 

Tracks, Phase II-Stage I”. Technical report prepared for Transport Canada Innovation Center, Ottawa, ON. 
3 NRC had proposed minimum of two UAV runs over a selected section of track in the statement of work. Given the conditions 

observed in the field, the availability of the time, and the interest of the host railway, it was decided to expand the scope of work to 
four UAV runs along four different test sections (in total 16 runs for UAV surveys were conducted). 
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• Used the collected UAV images to enhance the AI algorithm that was developed in Phase-I, and 

developed a new AI algorithm based on a recently introduced machine learning technique for 

water detection (described in detail in Section 4). 

• Conducted two runs of the instrumented hi-rail truck between Ottawa and Brockville and collected 

approximately 180 km of track data (described in detail in Section 5). 

• Processed the data collected during the hi-rail runs (described in detail in Section 5). 
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3 Using UAV and satellite imagery for mapping water 

3.1 Data collection 

This section describes the methodology followed for acquiring the data and assessing surface water over 

four test sites using UAV and satellite imagery at four different dates between June and October, 2021. The 

data processing required to generate a 3D point cloud, a DSM, and an orthomosaic, and to classify surface 

water from the orthomosaics and the satellite imagery, is explained. Finally, a general analysis is presented 

to quantify the changes in water surface area and elevation for specific sections along the railway. 

3.1.1 Test sites 

Four test sections along VIA Rail’s track between Ottawa and Brockville were selected for acquiring UAV 

and satellite data. These sites were selected following a preliminary field visit performed by the project team 

in March 2021 as well as consultation with VIA Rail. The selected sites are prone to high water level and 

flooding. The water levels in creeks and ponds alongside these sections are affected by the presence of 

beaver dams, and to a larger extent by seasonal fluctuations in water levels in the region. Figure 1 shows 

the relative location of the four test sites. 

 

Figure 1. The �U�H�O�D�W�L�Y�H���O�R�F�D�W�L�R�Q���R�I���W�H�V�W���V�L�W�H�V���D�O�R�Q�J���9�,�$���5�D�L�O�¶�V���W�U�D�F�N���L�Q���H�D�V�W�H�U�Q���2�Q�W�D�U�L�R���I�R�U���D�V�V�H�V�V�L�Q�J���F�K�D�Q�J�H���L�Q���V�X�U�I�D�F�H��
water levels. 

A standardized flight plan with a 50 m buffer on both sides of the track (Figure 2) was defined for each test 

site using ArcGIS 10.7.1, taking into consideration the UAV’s flight endurance, environmental parameters, 

accessibility, and camera characteristics (described in Section 3.1.2). The flight plan allowed for repeating 

the data acquisition of each area over four different dates. Table 2 shows the total planned area for each 
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test section, while Table 3 summarizes the time periods for the imagery acquisition. Because the main 

airframe and camera used in the project were not available for July 30th, a separate system was used for 

this date. The delays in train schedule, wind conditions, and ground support engagement impacted the 

overall UAV operation, and it was possible to collect the data from the four test sites on the same day only 

during the last deployment. 

Table 2. Total area planned for UAV data acquisition for each subdivision. 

Site Subdivision Inspected Area (ha) 

Site 1A Brockville 3.11 

Site 1B Brockville 1.44 

Site 2 Brockville 4.88 

Site 3A Smith Falls 1.79 

 

Table 3. UAV data acquisition dates. 

Site Subdivision June 2nd *July 30th Aug. 6th Sep. 9th Sep. 10th Oct. 19th 

Site 1A Brockville �9 �9  �9  �9 

Site 1B Brockville �9 �9  �9  �9 

Site 2 Brockville �9  �9  �9 �9 

Site 3A Smith Falls   �9  �9 �9 

* Matrice 600 Pro with X5 Camera. 

The flight plan for each test section was imported into DJI Pilot app, for which an example is shown in 

Figure 2. For the primary camera system (DJI P1), a smart oblique mission type was selected. Compared 

to the more conventional nadir image capture, oblique photography increases the amount of images in 

specific angles and the image rate. The green lines outside the blue polygon shown in Figure 2 are oblique 

line photos that are used to photograph the sides of the objects inside the polygon. Figure 3 schematically 

explains the difference between the oblique photography and conventional nadir image capture. 
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